2021年10月12日 · 低温加热技术是电池热管理系统的核心技术之一,是缓解动力电池在低温环境下性能衰减的关键。 本文综述了包括内部自加热法、MPH加热法、自加热锂离子电池、交流加热法等低温快速加热方法的最高新研究进展,并总结了不同加热方法的加速速度、能量消耗
2019年11月29日 · 交流电加热方法是在电池两端施加一个交流电,利用锂离子电池的内部阻抗实现为电池加热,由于交流电的方向始终在快速变化,从而避免了直流电大电流放电加热过程造成的电池容量的衰降,同时相比于直流电加热方式,交流方式的加热速度更快,同时效率也更
2022年6月6日 · MPH 加热法以电池与另一储能元件(如电池、电容)组成加热回路,以电池的充放电过程实现加热电池。 MPH 加热法能够实现较高的加热速度,确保良好的温度均匀性。
2020年4月16日 · 交流电加热方法是在电池两端施加一个交流电,利用锂离子电池的内部阻抗实现为电池加热,由于交流电的方向始终在快速变化,从而避免了直流电大电流放电加热过程造成的电池容量的衰降,同时相比于直流电加热方式,交流方式的加热速度更快,同时效率也更
2021年12月4日 · 本文综述了包括内部自加热法、MPH 加热法、自加热锂离子电池、交流加热法等低温快速加热方法的最高新研究进展,并总结了不同加热方法的加速速度、能量消耗、循环容量损失等关键性能参数。
2023年5月7日 · 本文综述了包括内部自加热法、MPH 加热法、自加热锂离子电池、交流加热法等低温快速加热方法的最高新研究进展,并总结了不同加热方法的加速速度、能量消耗、循环容量损失等关键性能参数。
2024年9月24日 · 在低温环境下,电池加热是提升储能系统性能、延长电池寿命以及确保其安全方位性的重要技术手段。 针对储能用高容量锂离子电池的低温加热问题,论文考虑电池的尺寸效应及其各向异性的热传导特性,结合数值模拟和实验测试手段,提出了利用电热膜对电池模组
2023年9月6日 · 锂电池管理系统(BMS)对锂电电池加热的方式大体可分外部加热与内部加热两大类。 外部加热方式有空气加热、液体加热、相变材料加热,以及热阻加热器或者热泵加热。
2020年11月15日 · 加热:温度过低时,电池会折寿(容量衰减)、衰弱(性能衰减),若此时充电还会埋下暴毙隐患(析锂导致的内短路存在引发热失控的风险)。 因此,温度过低时,就需要加热(或保温)
2022年11月5日 · 本文综述了包括内部自加热法、MPH加热法、自加热锂离子电池、交流加热法等低温快速加热方法的最高新研究进展,并总结了不同加热方法的加速速度、能量消耗、循环容量损失等关键性能参数。 另外归纳了动力电池低温热管理系统的设计目标,并对不同加热方法性能进行比较分析。 分析结果表明,交流加热法相比于其他方法更具优势,尤其在能量消耗、电池老化方